博彩网-博彩通-百家乐-百家乐平台_百家乐_全讯网 (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

博彩业| 贝博百家乐的玩法技巧和规则| 百家乐官网新台第二局| 宝龙百家乐官网的玩法技巧和规则| 百家乐试玩| 六合彩特码开奖| 做生意风水方向怎么看| 六合彩下注网| 百家乐在线投注网| 阿巴嘎旗| 巴宝莉百家乐的玩法技巧和规则| 乐九百家乐官网现金网| 百家乐强弱走势图| 百家乐官网赌博是否违法| 广东百家乐网| 游戏百家乐官网押金| 今晚六合彩开奖结果| 娱乐城百家乐打不开| 真人百家乐官网试玩账号| 大丰收百家乐官网的玩法技巧和规则 | 威尼斯人娱乐城--老品牌值得您信赖 | 百家乐视频打麻将| 百家乐官网娱乐城反水| 利都百家乐国际赌场娱乐网规则 | 灌阳县| 丽都百家乐的玩法技巧和规则 | 澳门百家乐赌技巧| 百家乐官网街机| 百汇娱乐| 金百亿百家乐娱乐城| 去澳门百家乐官网娱乐城| 娱网棋牌大厅| 威尼斯人娱乐代理注册| 高级百家乐出千工具| 百家乐官网英皇赌场娱乐网规则 | 百家乐官网如何投注法| 大发888游戏平台黄埔网| 鼎龙百家乐官网的玩法技巧和规则 | 菲律宾百家乐官网赌场娱乐网规则 | 单机百家乐官网的玩法技巧和规则 | 百家乐最常见的路子|